HOMEDOCUMENTATIONDOWNLOADSRESULT REPOSITORYLINKSINTERNALCONTACT | [ ClientBenchmarksOthers ] |
|
Linpack / HPLInfo: High-Performance Linpack is a software package that solves a (random) dense linear system in double precision (64 bits) arithmetic on distributed-memory computers. /pure-farming-2018-download-for-android.html. It can thus be regarded as a portable as well as freely available implementation of the High Performance Computing Linpack Benchmark. Linux: with MPICH- download '
linpack_src.tar.gz ' to your HPC computer or frontend (Further information on howto download benchmarks with IPACS-Client in the second Client Guide section.) $ tar -xvzf linpack_src.tar.gz unpack the linpack-tar-file $ cd hpl $ cp setup/Make.Linux_PII_CBLAS Make.Compute_CBLAS copy according to your system a setup file and give it a matching name $ vi Make.Compute_CBLAS edit the standart setup file according to your system, mainly:
ARCH = Compute_CBLAS TOPdir = $(HOME)/test/hpl (the new hpl-directory you've created by unpacking the linpack-tar)
MPdir = /opt/mpich/ch-p4 LAdir = $(HOME)/ipacs/ATLAS LAinc = -I$(LAdir)/include/comp LAlib = $(LAdir)/lib/comp/libcblas.a $(LAdir)/lib/comp/libatlas.a I had to install ATLAS ( http://math-atlas.sourceforge.net ) to have an efficient BLAS-Libary, which is included in the three lines above. $ make arch=Compute_CBLAS compile the source $ cd bin/Compute_CBLAS/ $ mpiexec -np 16 xhpl > Compute_HPL_CBLAS_16cpus.out run Linpack and write results in Compute_HPL_CBLAS_16cpus.out $ vi HPL.dat you can optimize results of Linpack-Benchmark by editing the HPL.dat in the directory of your executable ( xhpl ), further informations on tuning can be found in the respective section of the LinPach homepage - upload '
Compute_HPL_CBLAS_16cpus.out ' with the help of the IPACS-client (Further information on how to upload results with the IPACS-Client in the fourth Client Guide section.) back to Index
High-Performance Linpack Sample Output: |
|
|
HPLinpack 1.0a -- High-Performance Linpack benchmark -- January 20, 2004Written by A. Petitet and R. Clint Whaley, Innovative Computing Labs., UTKAn explanation of the input/output parameters follows:T/V : Wall time / encoded variant.N : The order of the coefficient matrix A.NB : The partitioning blocking factor.P : The number of process rows.Q : The number of process columns.Time : Time in seconds to solve the linear system.Gflops : Rate of execution for solving the linear system.The following parameter values will be used:N : 10000 NB : 60 PMAP : Row-major process mappingP : 4 Q : 4 PFACT : Left Crout Right NBMIN : 2 4 NDIV : 2 RFACT : Left Crout Right BCAST : 1ring DEPTH : 0 SWAP : Mix (threshold = 64)L1 : transposed formU : transposed formEQUIL : yesALIGN : 8 double precision words----------------------------------------------------------------------------- The matrix A is randomly generated for each test.- The following scaled residual checks will be computed: 1) Ax-b _oo / ( eps * A _1 * N ) 2) Ax-b _oo / ( eps * A _1 * x _1 ) 3) Ax-b _oo / ( eps * A _oo * x _oo )- The relative machine precision (eps) is taken to be 1.110223e-16- Computational tests pass if scaled residuals are less than 16.0T/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00L2L2 10000 60 4 4 114.84 5.806e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0879368 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0208085 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0046511 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00L2L4 10000 60 4 4 113.44 5.878e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0805507 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0190607 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0042605 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00L2C2 10000 60 4 4 113.64 5.868e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0879368 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0208085 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0046511 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00L2C4 10000 60 4 4 113.17 5.892e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0838213 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0198346 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0044334 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00L2R2 10000 60 4 4 112.92 5.905e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0838213 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0198346 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0044334 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00L2R4 10000 60 4 4 113.01 5.900e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0841615 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0199151 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0044514 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00C2L2 10000 60 4 4 112.10 5.948e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0879368 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0208085 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0046511 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00C2L4 10000 60 4 4 113.02 5.900e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0805507 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0190607 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0042605 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00C2C2 10000 60 4 4 112.47 5.929e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0879368 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0208085 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0046511 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00C2C4 10000 60 4 4 112.72 5.916e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0838213 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0198346 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0044334 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00C2R2 10000 60 4 4 112.70 5.917e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0838213 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0198346 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0044334 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00C2R4 10000 60 4 4 112.84 5.909e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0841615 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0199151 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0044514 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00R2L2 10000 60 4 4 112.17 5.945e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0879368 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0208085 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0046511 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00R2L4 10000 60 4 4 113.28 5.887e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0805507 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0190607 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0042605 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00R2C2 10000 60 4 4 115.10 5.793e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0879368 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0208085 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0046511 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00R2C4 10000 60 4 4 114.19 5.839e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0838213 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0198346 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0044334 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00R2R2 10000 60 4 4 115.15 5.791e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0838213 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0198346 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0044334 ... PASSEDT/V N NB P Q Time Gflops----------------------------------------------------------------------------WR00R2R4 10000 60 4 4 519.73 1.283e+00---------------------------------------------------------------------------- Ax-b _oo / ( eps * A _1 * N ) = 0.0841615 ... PASSED Ax-b _oo / ( eps * A _1 * x _1 ) = 0.0199151 ... PASSED Ax-b _oo / ( eps * A _oo * x _oo ) = 0.0044514 ... PASSEDFinished 18 tests with the following results: 18 tests completed and passed residual checks, 0 tests completed and failed residual checks, 0 tests skipped because of illegal input values.----------------------------------------------------------------------------End of Tests. | TOP |
|
|
|
|
Copyright © 2002-2005 ipacs-benchmark.org
|
- Linpack Benchmark Download Pc
Linpack Benchmark Download Pc
Linpack Xtreme is an aggressive console frontend benchmarking app best suited for testing overclocked PC's stability. Linpack uses the latest build of Linpack (Intel Math Kernel Library Benchmark). The goal behind this is to determine how long your computer can remain stable. One should expect their computer to crash at some point. Linpack / HPL Info: High-Performance Linpack is a software package that solves a (random) dense linear system in double precision (64 bits) arithmetic on distributed-memory computers. It can thus be regarded as a portable as well as freely available implementation of the High Performance Computing Linpack Benchmark. LINPACK uses column-oriented algorithms to increase efficiency by preserving locality of reference. LINPACK was designed for supercomputers in use in the 1970s and early 1980s. LINPACK has been largely superceded by LAPACK, which has been designed to run efficiently on shared-memory, vector supercomputers. Linpack Xtreme on 32-bit and 64-bit PCs This download is licensed as freeware for the Windows (32-bit and 64-bit) operating system on a laptop or desktop PC from benchmark software without restrictions. Mortal kombat x for ppsspp download. Linpack Xtreme 1.1.3 is available to all software users as a free download for Windows 10 PCs but also without a hitch on Windows 7 and Windows 8.